

Green Co Forum, CII, Chennai Stanadyne India Private Limited / Chennai Feb 2nd 2018

STANADYNE – INTRODUCTION

Stanadyne India Private Limited , a global fuel injection systems designer and manufacturer ,headquartered in Windsor, USA .Facility Located on Chennai -Tirupati highway -No.96, Aranvoyal Village, Thiruvallur Taluk & District-602 025

- Started Manufacturing in India since 2003.
- ISO/TS 16949 Certified , EMS Certificate ISO14001 : 2004 and OHSAS 18001; 2007 .
- BIQS Level III Certified.
- **ISO 50001:2011 and Green Co Certificate in pipeline.**
- **Total No. of Employees : 440**
- Annual Turnover : Rs.197 Crores.
- Manufacturing and Marketing of Fuel Injection Rotary pumps, Monobloc pumps & Injectors for Export and Domestic Markets.

STANADYNE GLOBAL PRESENCE

Copyright © Stanadyne 2016

FUEL PUMP PRODUCTS-FOOT PRINT

Injectors

Monobloc Pumps

Stanadyne's Invention in 1952

Fueling Innovation

EcoForce for <50HP Engines Off High way Applications

Stanadyne

GDI Pump

DB Rotary Pump

STANADYNE PROCESS FLOW

ENERGY MANAGEMENT SYSTEM

ENERGY MANAGEMENT STRUCTURE

Mr. K .Murugesan **Director- Operations Steering Leader**

R. Senthilkumaran **Energy** –Senior Manager

Project Execution / Evaluation Team Leaders:

K.Murugan

Jagadeesh

Suresh

Raja

POWER CONTRIBUTION ANALYSIS

Energy Consumption Scenario- Stanadyne

ENERGY CONSERVATION METHODLOGY

Energy Burden 2011-2012 - Stanadyne

ENCON PROJECT INITIATIVES-LAST 3 YEARS

ENERGY CONSERVATION SUMMARY

🔘 Stanadyne⁻

TOTAL ENCON PROJECT WITH COST AND ENERGY SAVING 2014-17

Year	No of Zero Investment project	No of Investment Project	Annual Electrical Saving, Million kWh	Annual Electrical Cost Saving, Rs Million	Annual Thermal Saving, Million kcal	Annual Thermal Saving R- ARY KW	Innovation F'actrical and in Swh	Innovation Electrical Cost Saving Rs Million	Renewable Energy Cost Saving	Total Annual Savings, Million Rs	Investment Rs million
2014-15	13	8	0.34	ENERG	SUMI 56 Mil G RS 20	10 ¹⁰ Mill 0.10 1.15	0.06	0.60	1.22	5.39	1.33
2015-16	16	ENERG	YEADU SY REDU GY COS	SAVII J.18	752.31	1.02	0.25	0.23	0.01	4.44	1.54
2016-17	6	13	0.51	4.41	124.72	0.71	0.04	0.35	4.80	10.27	2.95
Total	35	33	1.21	9.41	952.83	2.01	0.35	1.17	6.03	20.10	5.82

En con Project 1 - Climate Control Energy Optimization

Climate Control Room- Energy Optimization

Process Req:

Goal :

Match grinding cell, Assembly cell,

Calibration Cell and Standards room needs

Problem Statement :

Energy consumption is high to maintain

RH& Temperature

En con Project 1 - Climate Control Energy Optimization

Root cause :

Blower run 24X7

Heater Bank-142kw

9.20Lacs units/Annum is consumption

Blower

Idea Generation – why why analysis:

Maintain Temp Blower is necessary ?

Need to run 24x7?

Heater Bank is necessary ? **Need working Cont.?**

Maintain RH

Any Alternative ?

Any alternate?

Heater Bank Necessary?

Heater Bank

En con Project 1 - Climate Control Energy Optimization

Brain stroming:

Hot Water Generation

Climate controller-AHU interfacing

De-Humidifers

1/10 of energy consumption

Action:

Dehumidifier installed in all cells ,that can remove moisture and maintain RH. Installation of Temp Sensor in mid of Cell that can provide feed back to blower so that the blower can only run whenever the temperature in the cells touches 26 ° C

Bry Air Control Method

Dehumidifiers

Temp. Controller Feed back To Blower

Precise Temp Controller Interfaced to HVAC Blower Motor

HVAC Circuit System Climate Control – Stanadyne

Stanadyne

Requirement : RH 45- 55% , Temp 25 ± 2° C

12°C

Refrigerant Cool type

Compressor high efficient rotary

Power of 830 w/unit, Total Connected load 12.45 KW Humidity 45+–5 %

30Lit of Water/Unit is collected

Quality Unaffected 1/10 of energy consumption En con Project 1 -Climate Control Energy Optimization-Result

12.20 Lacs

Units

Benefit due to Best Practice:

Annual

Energy Savings Add-on Benefit:

 Switch off -380 KVA DG set -Reduce the Total connected load -Annual Fuel Cost saving 14.61 Lakhs
 Switch off-228 KW (Other Accessories) during Plant shut Down and Festival Holidays-Annual Energy Cost saving 27 Lakhs

3. Switch OFF-Boiler and ID Fan During plant shut

down -Annual Fuel cost reduction 9.57 Lakhs.

4. Preventive Maintenance Planning became easier.

En con Project 2 – Compressor Energy Optimization

Goal :

Optimization Of Air Compressor and Energy

Reduction

Root Cause Analysis :

Energy Consump No Supply vs Demand Control

Compressor unload /load un systemic

Brain stroming:

Intelligent Flow Control system to install at main header for Constant Pressure delivery Microprocessor sense rate of change of demand and according to directly increase/ decrease down stream flow pressure

Result :Annual Energy saving 0.94 Lac unitsIntangible Benefit:Switch OFF-22 KW Compression or Spare'spurchase 15 %PM Exedone periodicallyInvestment:4.5 lacs cost Rs

En con Project 3 – Shop Floor Light Energy Reduction

Goal :

Lighting Energy Reduction-Shop Floor

Root Cause Analysis :

Power saving of 20% in the lighting load .Life of lamps increases substantially resulting in reduced inventory and maintenance cost. Energy save in resistive load by maintaining the real regulated voltage. Energy saved by avoiding unnecessary high voltage. Under / Over Voltage Protection with graded time delay & Effect of load Power Factor on Output Voltage is Nil

Result:

Annual Energy saving of 0.27 Lacs

units

Intangible Benefit:

Spare cost reduction @ 10% Reduction of MTBF Lighting power factor maintaining 0.85 Constant Output voltage

En con Project 4 – Own Generator Fuel Reduction

tanadyne

Result:

Annual Fuel Cost saving 204.42 Lacs Monthly Fuel Saving -70 * 24* 30 = 50400Liters * 12 Month = 6.04 Lacs Lts

Benefit:

After commissioning switch OFF the Generator , now we are Utilizing During power cut Hours Investment: Rs 95.15 lacs

Thermal Energy Saving project 5 – Stanadyne

Fuel (Bio Mass Briquette)- Reduction

Process Req:

Match grinding cell, Assembly cell, Calibration Cell and Standards room

Problem Statement :

Bio Mass consumption is high to maintain Climate Control Condition

Bio Mass

Implementation Status – Stanadyne

Stanadyne[,]

Copyright © Stanadyne 2016

After Implementation-Result

By modifying external furnace in to built-in furnace, the overall efficiency is increased by

37%

- The motor is used to suck the excess steam from the boiler to the economizer.
- After modification to inbuilt furnace the motor capacity is also reduced from 20 HP to 12.5 HP moto
- Stack temperature was reduced from 120°c to 70 °c.
 - Considerable reduction in emission level spotted.

Benefit

Tangible Benefits:

- 1.Fuel Annual saving 29,72,000 @ 27%
- 2. Power Cost Annual saving 2,50,000
- 3. Material cost reduction 240,000
- 4. On time Investment Cost 10,80,000
- 5. Pay Back period Month 4.2
- In tangible Benefits:

tanadyne[.]

Operator working comfortable

Reduce Heat losses (Now working Normal Temp.).

Tube Cleaning Hours reduced (Man Hours reduction)

VAM Chiller Condensate water recovery

Goal: 100% Recovery of Heat in Flash steam & Condensate water from VAM Machine Problem Statement: Condensate water stored in ground tank and pumped to Feed tank with High Delta T difference. Action: Installation of closed loop condensate recovery system nearer to Boiler . Now condensate water pumping through float sensor and steam Flash pumping through deaerator automatically.

<u>Benefit</u>: Condensate water is pure form of water , There is no hardness and TDS It have less conductivity.
Feed water Temp Increased from 65 degree to 98 Degree Daily manual blow down not required , TDS maintained at min level 750.2.2 KW Motor removed, RO water saved.

Savings: 156 MT Bio Mass Briquette , 4680 KL RO water , 0.025 Kwh. Rs. 8.89 Lac-2016. Rs 25 lac annualised.

Investment : 6.5 Lacs.

Encon. No 6 - Automatic Power Factor Correction

Goal: Automatic Power Factor to maintain at 0.99 Problem Statement : Due to Low Power Factor. Equipment do not run efficiently and also Overloading of the Transformer, bus bar and Cable heat experienced leading to Increase in Losses Action : Installed Automatic Power factor Correction meter in to the capacitor bank ckt which will take care of Automatic switching of Cap bank based on Inductive load to maintain PF band of 0.99.No manual intervention is required.

Benefit : Lower Energy Consumption

Savings: 0.18 Lac kWh Rs. 1.46 Lac Annualized saving 4.38 Lac.

Investment : 0.25 Lacs

Encon. No 7 Energy Losses Reduction- HT Incomer/LT Panel

Goal : Reduce Losses from HT Incomer to MV Panel Problem Statement: Daily 1120 Kwh. lost with or without Load

Action :. Using Ecolibrium meter, following actions are taken after mapping of losses.

Faulty capacitor indentified and new one replaced
 HT Incomer Cable Moisture and ohmic very less , heater bank added on the VCB

Tr. Secondary Bus duct vibrations and Noise heard during full load , properly supported and maintained Bus duct
Found high Temp on incomer ACB , incomer terminals Burnt .Removed defective New 1600 Amps ACB provided
.Predictive and preventive measures appended.

Savings: 0.93 Lac kWh Rs. 5.53 Lac

Investment : 0.45 Lacs.

Stanadyne®

Encon. No 8 Chiller Plant – Energy Optimization by VFD Installation

<u>Goal</u>: Chiller Plant power reduction <u>Problem Statement</u>: Found heat observed on the Cable and Motor , frequent cable and Motor Failure <u>Action Plan</u>: VFD installed with 24 Hours operation in the chiller by speed reduction.

- Chiller pump 22 kw Motor working with VFD @ 45 HZ
- Cooling tower 11 Kw working with VFD @ 15 HZ
 Condenser pump 30 KW working with VFD
- After above changed total full load amps reduced from
 140 A to 98 Amps

Savings: 0.17 Lac kWh Rs 1.35Lac

220 Kwh/day Reduction realized. TOTAL VFD INSTALLED – 21 nos

Investment : 2.06 Lac.

Encon no 9 ZERO INVESTMENT – Conversion From

Goal : Reduce the Fixed Energy Consumption
Problem Statement : Blower Fan Consuming High
Energy Consumption
Action : Brain Storming of En con team resulted in
change of all Air Blower Fan and AHU Motor's
Convert from Delta To Star Connection.

Benefit :

Current reduced from each motor by10 Amps for a motor Capacity of 22 KW

 Reduction in voltage Drop , improvement of power factor

Motor Operating efficiency improved

Star Connection in AHU panel

Savings: 0.083 Lac kWh Rs 0.65 Lac

Investment : Zero

Encon. No 10 AHU Efficiency Optimization & BLDC fan Motor

Goal : Improve the AHU Efficiency

Problem statement : Due to Insufficient air Flow quantity
Cold Room Temperature not met the Specific Limit
Action : AHU internal and external coil cleaned by Jet
Cleaner machine instead of Manual cleaning by use
Detergent powder

Benefit :

After Cleaned improved the AHU delivered air quantity ,
 Increase the CFM , Maintaining the Cold room Temp. 25
 Degree , Reduce the Blower Fan Current reduction @5% ,
 VAM Chiller Outlet Temperature increased from 7 Degree to
 10 Degree During day Hours and Night Hours 14 degree.

Savings: Rs 0.074 Lac kWh Rs 1.0 Lacs 60 MT Bio briquette reduction Cost saving 3.42 Lacs

Investment : Minimum cost (< 0.20 Lacs)

- 1. Less Power Consumption Super Fan has been provided at Canteen Dining Hall
- 2. DC 4 W 20 N's of Fan provided at 1st level
- 3. High speed
- 4. Common Remote control operate with all Fan
- 5. Various speed Control
- 6. Less power Consumption

ENCON SAVING PROJECT 11

Cooling Tower Retrofit

Why Project Selection : High Power Consumption and In efficient operation

Action : converted into square Type Direct Driven FRP cooling tower FRP fan Blade ,Use of with Honeycomb Fills, Energy Efficient low speed motor. After Installation drift and water losses reduced.

COST

PAY BACK

SAVING : 52416 Kwh, 3360 KL Water, INR 4.64 Lakhs UNINTERRUPTED PRODUCTION.

ENCON SAVING PROJECT 12

IE3 CONVERSION

ENCON SAVING PROJECT 13 VFD with IE3 Motor Why Project Selection : Chiller Plant **Energy Consumption High** After Action : Allow Accurate output of **No Photo** Voltage and Current ,select Different Without VFD range of speed and depend on the **Operate In efficient** load Requirement, Lower Speed, No Water Pump During power starting Current failure Genset load slowly increase . 22 Kw 50 HZ @ 22 Kw 38 HZ 0 No compromise Process on Normal water Efficient Energy pump 41 Amps water pump 22.5 parameters. **INVESTMENT : 0.80 Lakhs** MONTH: 4 PAY BACK SAVING: 26208 Kwh, COST INR 2.30 Lakhs

tanadyne[.]

ENCON SAVING PROJECT 14

Evaporative Air Cooler

Why Project Selection : Air Blower high power consumption

Action : Replacement of High volume Evaporative Heavy Duty Industrial Cooler installed at 5 different location and removed the 60 kw Centrifugal air Blower . Air cooler of 30000CMH with power Capacity 1.1 kw ,serves with Delta T

of 4-5 Deg.

Stanadyne

ENCON SAVING PROJECT 15

Project Selection : Lighting Load optimization by LED Lights in Heat **Treat shop from Florescent Lamp** due to Low Illumination level, Freq Bulb Failure , lighting load high. Action: 60 no's replacement of 36w

Florescent lamp (2.1 kw) to 150 w High bay LED fitting 8 No's

Heat Treatment High Bay LED

Before

After

60 No's of 36 w **Florescent lamp** 8 No's of 150 w High Illumination at entire **Bay LED Lights** Shop floor

ENCON SAVING PROJECT 16

Project Selection : Compressor Energy optimization by analysis of load pattern and Leakage reduction. Action : Based Air Audit ,started the optimization work with

- 68 points Air leakage arrested
- **Damaged Compressor main header** ••• pipe line replaced with FRP Coated
- After rectification compressor energy saved

Compressor Air Optimization

OTHER ENCON PROJECTS (Minimum saving)

List Of projects	Photo Copy	Year Of Implemen tation	Annual Electricity Saving	Inves tment	Pay Back
Install the Star rated Air conditioner at Tool room, Application center . Server & CMM		2016-17	16200 Kwh 1.43 Lakhs	2.12 lakhs	17 M
Condenser feed water pipe line completely insulated properly with heat resistance wol and aluminum sheet gladding		2016-17	25 Ton of Bio Mass Briquette 1.42 Lakhs	0.75 Lakhs	6 M
BLDC 25 W fan 30 No's installed at shop floor, canteen Dining hall, security office, worker rest room and removed 70 w celling fan.		2016-17	5640 Kwh 0.49 Lakhs	0.68 Lakhs	16 M

OTHER ENCON PROJECTS (Minimum saving)

List Of projects	Photo Copy	Year Of Implementat ion	Annual Electricity Saving	Inves tment	Pay Back
 Heat Treatment Vacuum cooling tower Water Pump conversion to IE 3 Energy Efficient Improve the motor Efficiency from 64% to 86 % , A/C Condenser Fan , Toilet Exhaust Converted in to Energy efficient Axial Fan 		2016-17	10964 Kwh 0.97 Lakhs	1.28 Lakhs	16 M
Pump Calibration machine Identified Diesel leak in fip at running condition with help of improved LED Lamp		2016-17	7488 Kwh 0.66 Lakhs	1.25 Lakhs	22 M
2 Ton spilt A/C continues replacement of Smaller capacity of bottle cooler for Raw Chemical storage		2016-17	5400 Kwh 0.478 Lakhs	0.65 Lakhs	16 M

ENCON PROJECTS-ZERO INVESTMENT

List Of projects	Photo Copy	Year Of Implementa tion	Annual Electricity Saving
CNC Machine's Idle Hours reduction thru Logic Modification - Akshya grinding machine Lube Oil pump running Hrs reduction , Akshya gun drill Coolant pump , Twin flushing machine		2016-17	Power saving per annum 62596 Kwh
Motor Elimination - STUDER S21 NEW chiller unit circulation pump removed and coolant line directly connected to main pump. Micrometric grinding machine 1no's of coolant pump removed and put the butterfly valve		2016-17	Annual saving 27242 Kwh through motor elimination machine's and utility
Heat Treatment SQF Cooling tower Temperature Controller installed	34/3	2016-17,	Power saving per annum ~ 10800 Kwh
Oil Mist collector Air always ON condition , Circuit modification end of the cycle Turned ON the Valve and open the Air		2016-17	Annual Power Saving 6552 Kwh
Automatic Door closure only for material movement, circuit modified material with man only sense sensor until can't open the door		2016-17	Average per day 10 Times 1.81 * 10 = 18.5 Kwh/ Day * 26 Days = 478 Kwh and Biomass briquette 10 ton saving

ENCON TREND CHART

Stanadyne

Encon. Category	2012-13	2013-14	2014-15	2015-16	2016-17	Total
Energy Efficient Conversion (IE3)	0	0	0	0	4	4
Idle Time Reduction	2	4	12	vement	4	28
Speed Reduction	0	2	Encon. Imp	ory	1	8
Motor HP and Capacity reduction	2	TOTAL 10	arious Categ	4	2	10
Optimization of Air	1	1	0	2	2	6
Power Factor Improvement	0 The	ermal energy 10%	water/waste Energy reduction 10%	y Effcient E3 4%	0 Idle time	3
Power Optimization	Power				30%	20
Thermal Energy Reduction	Optimizatio 21%	on	motor HP	speed	reduction	9
water waste Reduction		Air Optimiza 6%	tiom reduction 11%		3%	9
Renewable Energy	0				1	2
Star rated A/C	0	0	0	0	2	2

PREDICTIVE MAINTENANCE - Thermography

- Use of Thermal Camera to detect heat loss/insulation damage.
- Observed SQF Power Contactor R & B phase Terminal Temperature
- Thermograph used for all Electrical panel, BBT and CNC Machine Control panel
- Thermograph test is incorporated in periodic check.
- High priority thermal image immediate Corrective action
- 6 month once Review critical points completed and periodical Maintenance work followed by Encon. Team

								DOC.NO:	TS/FO/MNT/
	Stanadyne [.]		Sta	nadyne Indi:	a private lími	1-1		REV.	
				-	•			DATE:	1/3/2016
			P	REDICTIVE MA	AINTEN	1	ITICAL MACHIN	ES FEB-2017	
SL.N O	DESCRIPTION	LOCATION		BEFORE	ctive		AFTER TEMPERATURE	STATUS	Verified
1	To HT Incomer-Incoming busbar		HIGH	78	rreut		-		
2	To Compressor Incoming Cable		HIGH	ahy CC	ota	iy-17	45	Completed	
з	To UPS MP Switch	MV BANEL		raping	Ma	y-17	48	Completed	
4	EB Incomer	INTO PAREE	ormos	sion Rer	- No	v-17			
5	Bus Coupler Back Side	T	ne. A	Ction	- No	V-17			
6	UPS MP Busbar			90.8	No	V-17			
7	Capacitor - 11		IGH	74.4	cable Ap tightness Ap	or-17		completed	
8	Capacitor - 13		HIGH	79.6	cable Ap	or-17		completed	

ROAD MAP TO ACHIVE ENERGY REDUCTION 2014-17

SPECIFIC ENERGY CONSUMPTION TREND

Stanadyne

ABSOLUTE ENERGY REDUCTION TREND

GLOBAL BENCH MARK -SEC

Stanadyne

GLOBAL BENCH MARKING FUEL INJECTION PUMP WITH PARTS

GHG INVENTORISATION

Scope 1 Emission Debit :

State Grid Power in Kwh.

Scope 2 Emission Debit :

Diesel Consumption for DG set, LPG for Canteen Kitchen Cooking ,Diesel Consumption for Vehicle material movement.

- Scope 3 Emission Debit : Diesel Consumption for Furnace Boiler and Coal power, Refrigerant Gas for A/C Emission Credit
- ✓ Wind Power Used @ 85%
- Bio Mass Briquette 95 % Utilization
 /month
- Regular Tree Plantation Inside factory

Innovative Project 1 - Housing manufacturing line

***** TITLE OF THE PROJECT:

Conservation of energy in Housing manufacturing line **Current set Up**: Housing machining consists of HMC Machines, <u>which consume 40kw power</u> and also low speed/ low productive

WHY Choose these Machines: Idea Generated by Stanadyne India private Limited discussed with Cross functional Team through brain storming, on how to Reduce the Power consumption & cost and SEC. The purpose of this project is to Mainly Focus in energy reduction to target the energy requirement within the existing demand. new project is implemented within the existing Power transformer & Machine UPS in built connected load.

Mori–Power 40kva

New M/C ing Cell- Implementation of Lesson Learnt

Machine selection – selected 5 axis CNC VMC machines are of <u>20KW connected load and high speed machines</u> which can yield 300nos/day.

Tangible Benefit- Annual power saving 0.24 Million Kwh.

investment for the Power Transformer, UPS 750 KVA & 1500kVA Genset with higher capacity for additional of 5 no's housing machines saved

Specific Energy Reduction - 2.06KW /Housing as against bench mark of 9 KW / part. In house Team selected mc and MC OEM with Tool depth Function , safety function, breakage prevention function ,Energy Saving function, Idle time sleep mode function, etc so as to Keep SEC well under bench mark level.

New M/C ing Cell- Implementation of Lesson Learnt

Implementation of Lesson Learnt-Power

- Less Power-High Speed
- Mist Collector-Clean Air
- Swarf's -Auto Disposal
- User Friendly Logic
- Auto Retraction-In Power Failure
- **Total Cost saving :**
- yielded 300 Amps reduction also contributed for the above project savings
- Power Cost saving 16.56 Lac.
- Other Saving 32 Lac.

Transvector Nozzle

Housing area LED Lights

Energy Efficient Pump

TOTAL EMPLOYEE INVOLVEMENT

Stanadyne

TOTAL EMPLOYEE INVOLVEMENT-Kaizen Reward

Top Management Engagement on Encon Project Initiatives

ENCON TEAM WORK

Stanadyne

Power & Fuel Cell wise Updating

DATE

at the line

NEB COST

CANTER N

3 1 2163

DG COST

D

12.55

HTS COST.

Daily Power and Fuel Cost Updating on Daily review meeting , which is create the awareness on the all employee . Every one knows the daily power cost against our per day target . Daily review the Management meeting and reason for increase the power cost

ON LINE ENERGY CONSUMPTION -Sample Report

tanadyne

ENCON IMPLEMENTATION METHODOLOGY

STANADYNE'S CERTIFICATION

GREEN-CO CERTIFICATION PROPOSAL and ENCON INVESTMENT

GreenCo Green Company Rating System How Green is your Company? CII

7th Sep 2016

Confederation of Indian Industry

CII - Sohnsbill Godnej Green Business Centre Survey No 64, Kothaguda Post, Near Hitech City,

Ranga Reddy Dist, Hyderatad - 500 084, INDIA Tel: +91-40-4418 5111; Par: 91-40-2311 2637

N Muthusezhiyan Principal Counsellor

To,

Mr Murugesan Director Operations Stanadyne Amalgamations Pvt Ltd.

Dear Mr. Murugesan,

Proposal for Implementing GreenCo, Green Company Rating System

Thank you for the interest expressed in availing the services of CII – Sohrabji Godrej Green Business Centre (CII – Godrej GBC) to implement GreenCo, Green Company Rating System at Stanadyne Amalgamations Pvt Ltd., Chennai unit. We are pleased to submit our proposal on GreenCo Rating for your kind consideration.

1.0 Introduction & Background

Organizations across the globe agree that Resource scarcity & Climate change will transform how Businesses are conducted in the years to come. They have to deliver the growing population who are constantly seeking a better lifestyle, from a planet with finite resources, many of which are now rapidly running out. Going Green is no longer a philanthropic afterthought but an approach to embed more forward thinking and responsible business practice into how a business produces and delivers its goods and services.

A holistic view on how to make business practices more efficient and green opens several new opportunities that can help companies manage costs and gain the much needed competitive edge. As more and more companies appreciate the cost benefits of going green, a clear holistic mechanism was not available for evaluating their performance and gaps along with a growing need for expert insight. A step towards this direction is the launch of GreenCo Rating by CIL, a "first-of-its-kind in the world" framework that provides guidance and leadership to organizations to tread the green path.

2.0 Objective

CII Godrej GBC has developed the GreenCo Rating System the "first of its kind in the World". The objective is to define and assess "How Green is your company" and highlight the way forward to facilitate world class competitiveness through Green strategies. The assessment provides significant value addition and direction to businesses in terms of Resource Conservation, Greener Value chain, superior Ecological performance and an enhanced Corporate Green Image. The framework adopts a cradle to cradle life-cycle approach to evaluate the activities of the company on the ecological front.

> Confederation of Indian Industry CII-Sohrabji Godrej Green Business Centre

***** 2016-17 Plant Rs. Turn over 1762 Million Encon **Projects** Invested Rs 1.9 Million Investment is 0.10 %

2017-18 Encon Project Proposal

- ISO 50001 Certificate 1.98 Lakhs (Mar 2018)
- Green Co Certificate 6 Lakhs ,
- ✤ Encon. Projects 20 Lakhs , Total Proposal 28
 - Lakhs

ENCON PROJECTS- IMPLEMENTATION SAVING BENEFITS

		April 16	May 2016 J	une 2016 Ju	ly 2016 Aug	ust 16 Sep	2016 Oct 20	16 Nov 20	16 Dec 2016	Jan 2017	Feb 2017	March 2017
	Plan-Amp	s 25	25	25	25 2	25 2 10 <i>/</i>	5 25 o ac	25	25	25	25	25
	Actual-amp	25	25	25	25 4	+0 4	o 20	20	25	20	20	0
Cumi	lative Amp	s <mark>25</mark>	50	74	100 1	40 1	38 214	234	259 gible bon	279	299	307
O Sta TOTAL Year	No of project	I PROJEC Annual Electrica I Saving, Million kWh	T WITH C Annual Electrica I Cost Saving, Rs Million	OST AND Annual Thermal Saving, Million kcal	ENERGY Annual Thermal Saving, Rs Million	SAVING Total Annua Savings Million Rs	2013-17 I Investm s, nt Rs million	* 1.Tr * 2.V0 * 3.Ca * 4.Sp * Tan	ansfomer B change ble and M ending of gible Bene	up grad elimina IV panel 75 la efit	lation e ited chang acs bee	eliminated e avoided n avoided
2013- 14	16	0.47	3.40	69.00	0.24	3.63	1.04	- ≪ Cr ≪ Ec ≪ C	uipment's	s with V r Optim	FD woi ization	rking
2014- 15	21	0.34	2.82	131.52	0.75	3.57	1.33	✤ Er♦ Va	ergy Effic luable Pr	ient pu ocess cl	mp con nange	version and
2015- 16	28	0.40	3.18	752.31	1.02	4.21	1.54	El M	minate M otor Elimi	/c nation	Ac	ditional
2016- 17	20	0.51	4.41	124.72	0.71	5.12	2.87	♦ 5 ♦ Li	Star A/C i ght optim	nstallat ization	ion CO 1(nnected load-)0kw for
Total	85	1.21	9.41	952.83	2.01	11.41	3.91	71			e 2	016-17

RENEWABLE ENEGY SUBSTITUTION – WIND ENERGY

- Wind Power consumption at Stanadyne
 India private limited, is valued at
 Quantum of 0.55 MW/Hr for round the
 clock connected to the State Grid
- 80 % of Total demand is subdued with
 Wind Power
- Wind Source Available from June 2016 to April 2017 .
- Annual Wind Generation 47 Lakhs KWH
- Annual Power cost saving Rs . 48 Lakhs
- Mitigation of co2 56.4

SOLAR DAY LIGHTING SYSTEM WITH TURBO

Description of the Project: Advance Day Lighting solution product is Combination of high performance Prismatic lens with Light Diffuser, which is High impact UV Resistant polycarbonate lens.

Feature: High light Transmission , Uniform Light Distribution , Double/Triple glazed system for control the heat , Noise reduction & Long life Energy Saving Calculation Equivalent Electrical lighting 900 watts . Total cost saving 2.29 Lakhs,spare cost 10% reduction Investment 2.48 Lakhs ROI- 12 months

200 Kw ON GRID SOLAR - Pipe Line project

Project Plan – 200 kw solar Roof top On grid power model CAPEX Target for Solar installation- 2018 Feb . Basic activity like Quotation Comparison and product selection , suppler evaluation every thing completed . Proposal for 2 X 100 KW on Grid Solar Power listed below

	Subbuet -T	Supplier -2	Subbuei -2	Supplier -4	
Model	CAPEX	CAPEX	CAPEX	CAPEX	TARGET
Capacity	2x100 Kw	2x99kwp	2x100kwp	2x100kwp	FEB
Cost	16034600.0	10616073.0	10764000.0	13900000.0	2018
Installation		1593900.0	936000.0	Included	
ED	NA	NA	NA	NA	
VAT/CST	5%	5% and Service Tax 14%	2% and Service Tax 14%	5%	
Nett	16836330.0	12963922.7	12046320.0	14595000.0	
Payment terms	50% Adv/40% against mat/10% after comm	50% Adv/50% against material dispatch	305 adv/10%/50% against mat/10% comm	30% adv/65% against mat/5% comm	
Guaranted Power	<u>3,21,720 kw hr</u>	2,90,000 kw hr	2,90,000 kw hr	2,90,000 kw hr	18-12

LIQUID WASTE UTILIZATION

List Of projects	Photo Copy	Year Of Implem entation	Annual Saving	Inves tment	Pay Back
Steam Trap Condensate water recovery and Utilizing for Boiler Feed water. Annually 15.6 KL of Condenser water collect from steam Trap and back to boiler feed water Tank		2016-17	117 Million of Kcal Bio mass Briquette 1.71 Lakhs	0.01	< 1 M
Oil skimmer has provided all CNC Machine's for skimming the Oil. Burr conveyor oil tank has modified segregate the oil at top layer and Burr kept stored bottom.		2016-17	5 Liters of Hydraulic oil saved after modification, Monthly 150 liters Water Based Coolant 3600 liters. Cost Benefit 0.42	1.85 Lakhs	1.25 M

WASTE CONSUMPTION TREND

GREEN SUPPLY CHAIN – BEST PRACTICES

Parts Localization to reduce lead time, Carbon Footprint

through transportation and fuel consumption.

Description	Previous Source	Current source
Drive Shaft	China	India
Governor Cover	China	India
Housing	China	India
Sub Parts	USA	India
Various parts	USA	India

BENEFIT

Fuel injection pump parts Imported from china through ship , distance around 2980 Km. Development of Localized source of material supply helped to Mitigate Co2 Emission reduction by 26.2 ton per trip , similarly parts from USA To Localization will help to reduce 135 Ton of Co2 Emission reduced per trip .

Reduced 135 Ton per Trip of Co2 Emission

Total 156 Ton of Co2 emission Reduction

ENVIORNMENT PROJECT

Project No 1 : Eco Friendly Gen-set put into use as existing Gen-set had high fuel consumption and heavy white smote and oil leak. Installation of 500 KVA Electronic injection Gen-set delivers better Unit /Lit ratio 3.7-4.0 . Diesel Consumption has been reduced and Exhaust smoke ,Engine Oil leak has been wiped out.

Project No 2 : DURR 95C Hot Air Exhausted and Hydro carbon emission reduction by use of existing blower re-modified and Connected to exhaust Vent . Work zone temperature dropped by 4Deg , with auto shut of blower at the end of shift for energy saving.

Before

After

Capacity – 500 KVA Cummins Make , Acoustic Enclosure.

 After 3-4

 Degree

 Reduced

ENVIORNMENT PROJECT

Project No 3 : In existing Diesel Pump frequently coil burnt, diesel leakage while running . Both Diesel Pump removed and Energy Efficient Diesel pump installed and existing Pipe line . After Connected no leakage on the Diesel to avoid Ground contamination & ensure safety Function.

Ambient air quality ,Indoor oil Mist, Stack for DG , Furnace ,Boiler ,sound & illumination Lux level Analysis .Based on report corrective action are initiated. As of now Nil NC report legal compliance and corporate compliance .

Power saving – Annual 216 Kwh, Diesel – 200 litters.

WATER CONSERVATION

Bubble tap Provided

Ro reject water recovery

Water level sensor all Tank

Stanadyne

Major water Conserve Cooling tower RO Water Evaporation 3 years 26 Kaizen implemented hrough Encon. Team //

Annual Water save 7200 K.L

RO Reject water

Reuse

Annual water saving

7200 KL

Annual water Consume.Under Ground pipe line Removed above the ground Valve ¹/₂ Position 24960 KL. used

Ammonia Ro reject water

Recirculation

Boiler Feed water Reduction

GREEN SHOTS

THE R. L. LEWIS CO., LANSING MICH.

1000

SUL DIG GE GE ID ON

Annually 100 Trees plantation 26% Green belt development Per Hectare 177 Trees Planation Green Belt development 1.62 hectare

Before

Copyright © Stanadyne 2016

Th Staned

entrance

Factory

After

Encon. – Pipe line projects Action Points

- 18 W 2 feet LED Lights office PO Raised Material received OCT 1ST WEEK Completed (10 Amps)
 - AHU Flat belt October 18th 2017 (8 amps) Completed
- 30 KW VFD for Condenser Quotation negotiated (P & E Raised) Nov 15th 2017 (25 Amps)
- Occupancy sensor Material received (Toilet trail done) Oct 2017 (3 amps)
- Machine's Gear box Modification (PO done) Nov 1st week completed 9 amps
- Gardner Machine 55 KW VFD Installation (Po done) Nov 16th 14 amps
- Chiller plant Motor Reduction after IE3 Conversion , 1 no of 22 KW stopped and another motor Operate with 45hz Frequency . – Completed (36 Amps saved)
 - 37 Kw Compressor VFD installation , after Compressor run with 35 Hz Completed (20 Amps)
- Higher Power Consumption Machine we installed smaller capacity compressor, reduce the Compressor power consumption – Completed

ENCON CHALLENGE AHEAD FOR 2017-18

tanadyne

ENERGY CONSERVATION AWARDS

NECC AWARD (Merit Certificate) 2014

CII ENERGY EFFCIENT AWARD 2015

CII ENERGY EFFCIENT AWARD 2016

CII ENERGY EXCELLENT EFFCIENT AWARD 2017

Copyright © Stanadyne 2016

CII EHS Excellence Award 2017 – 4 star Rated

